
Massively parallel linear-scaling algorithm in an ab initio
local-orbital total-energy method

Spencer D. Shellman a, James P. Lewis b,*, Kurt R. Glaesemann c,
Krzysztof Sikorski a, Gregory A. Voth b

a School of Computing, University of Utah, Salt Lake City, UT 84112-0850, USA
b Henry Eyring Center for Theoretical Chemistry, and Department of Chemistry, University of Utah,

Salt Lake City, UT 84112-0850, USA
c Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Received 19 October 2002; received in revised form 13 November 2002; accepted 31 January 2003

Abstract

Similar to the manner of S. Itoh et al. [Comp. Phys. Commun. 88 (1995) 173], we report implementation of a

massively parallel linear-scaling algorithm into an ab initio tight-binding method called FIREBALLIREBALL [Phys. Rev. B

(2001)]. The use of local-orbitals yields a very sparse Hamiltonian matrix which facilitates using a linear-scaling al-

gorithm to obtain the electronic band-structure energy. The general functional form of Kim et al. [Phys. Rev. B 52

(1995) 1640], which minimizes a functional to obtain the electronic band-structure energy, has been parallelized utilizing

the conjugate gradient method. The results of this approach are reported here. In addition, the use of ‘‘fireball’’

wavefunctions, where the wavefunctions are explicitly zero beyond some cutoff, allows for pre-generating all integrals

describing two- and three-center interactions. The computation of these integrals is then an easily parallelizable

problem for which the results are reported. Both integral generation and the linear-scaling optimization procedures are

parallelized using the standard MPI message passing interface mixed with an OpenMP strategy.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

As each new generation of computers is introduced, the scope of computational endeavors becomes

more promising. Larger and longer simulations can be run, producing better quantitative results, answering

a variety of scientific questions. A major factor in producing more efficient and feasible computational tools

is the utilization of parallel computers. The most recently produced supercomputers boast of terascale
computing through the development of parallel algorithms. The advances of computational hardware has

*Corresponding author. Present address: Department of Physics and Astronomy, Brigham Young University, N233 ESC, P.O. Box

24658 Provo, UT 84206-4658, USA.

E-mail address: james_lewis@byu.edu (J.P. Lewis).

Journal of Computational Physics 188 (2003) 1–15

www.elsevier.com/locate/jcp

0021-9991/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0021-9991(03)00069-X

mail to: james_lewis@byu.edu

also significantly improved the computational software produced in the electronic-structure community.

Several methods even incorporate some degree of parallelization to ideally reduce the overall computation

time by the number of processors utilized (for example, see [1–6]). However, with a few exceptions, most

have not demonstrated efficient parallelization on hundreds or thousands of processors. The need to apply

theoretical methods to increasingly computationally demanding chemical systems is the driving force be-

hind the parallelization efforts reported here.

Many properties of a molecular system depend upon the environment in which they occur. To fully

understand many chemical reactions of molecular systems it is necessary to study condensed-phase reac-
tions rather than gas-phase reactions. For example, performing a simulation of a single octahydro-1,3,5,

7-tetranitro-1,3,5,7-tetrazocine (HMX) molecule, a highly energetic (explosive) material shown in Fig. 1,

decomposing in a condensed-phase environment would require that the image of the decomposing mole-

cules do not strongly interact with each other. Therefore, to properly treat the environment in condensed-

phase molecular systems, thousands of atoms would be needed to increase the size of the periodic supercell.

For example, a 4� 4� 4 supercell of HMX would contain 1792 atoms (128 molecules). In addition, a

sufficiently accurate method must be used to obtain at least the correct qualitative features of the reaction, if

not the quantitative accuracy.
Empirical potentials will fail to produce the correct chemistry without bias because bond-breaking

mechanisms require a many-body effect due to the quantum nature of the chemical bond. Semi-empirical,

or tight-binding (TB), methods provide a quantum mechanical picture; however, the primary computa-

tional ‘‘bottleneck’’ of such electronic-structure methods is the adverse power law scaling, OðNlÞ, where N
is the total number of basis set orbitals and l is generally 3 or greater. In TB methods or density functional
theory (DFT) methods, where a linear combination of atomic orbitals (LCAO) are used, the power law

scaling inherently is l ¼ 3 because the band-structure energy is evaluated solely from a generalized ei-

genvalue equation. Several approaches for reducing the adverse power law scaling in these methods (for
non-metals) from l ¼ 3 to l ¼ 1 (linear-scaling methods) have been the topic of much discussion in the
literature (see [7,8] for reviews). The primary criterion for using using these linear-scaling methods is usually

satisfied within a tight-binding approach, namely, the Hamiltonian and overlap matrices are quite sparse.

Little effort has been made to parallelize these linear-scaling algorithms.

Similar to the typical TB approach, we have introduced an ab initio TB approach, called FIREBALLIREBALL,

which is an improvement to the original Sankey–Niklewski method [9]. The FIREBALLIREBALL method avoids the

stringent approximations present in semi-empirical methods, because the approach relies upon no exper-

imental parameterization. The use of local-orbitals in the FIREBALLIREBALL method yields a very sparse Hamil-
tonian matrix, which facilitates using a linear-scaling algorithm to obtain the electronic band-structure

energy. The general functional form of Kim et al. [10], which optimizes a defined functional to obtain the

Fig. 1. The boat and chair gas-phase conformers of HMX.

2 S.D. Shellman et al. / Journal of Computational Physics 188 (2003) 1–15

electronic band-structure energy, is our functional of choice. The optimization of this functional has been

parallelized similar to the method of Itoh et al. [2] developed for TB methods; however, we have made

significant improvements. In particular, we have developed a method for determining the ideal stepsize in

the conjugate gradient optimization algorithm and we use the standard MPI and OpenMP libraries to

perform the parallel tasks. We report here the implementation of a massively parallel linear-scaling algo-

rithm into our ab initio TB FIREBALLIREBALL method [11]. Generalization to similar TB or other semi-empirical

methods can be achieved with little effort.

This paper is organized as follows. Section 2 describes the theoretical background of the FIREBALLIREBALL

method. Section 3 discusses the results for parallelization of the integral routines evaluated in the CREATEREATE

module. As an initial benchmark comparison, implementation of parallel diagonalization libraries

(ScaLAPACK) into FIREBALLIREBALL was considered; our results are discussed in Section 4. From the results of

the ScaLAPACK implementation, it is evident that a more efficient parallel strategy is needed. This strategy

is discussed in Section 5. The results for the massively parallel linear-scaling with system size implemen-

tation are discussed in Section 6. More specific details about the algorithm for our parallel linear-scaling

strategy are given in Appendix A.

2. Theoretical background

A summary of the main features of the FIREBALLIREBALL method is discussed here; for a more detailed dis-

cussion, we refer the reader to [11] and references therein.

The theoretical basis of the FIREBALLIREBALL method is the use of DFT with a non-local pseudopotential

scheme. At the core of the method is the replacement of the Kohn–Sham energy functional by the ap-

proximate Harris–Foulkes functional [12,13]

EHarristot ¼ EBS þ U ion–ion
�

� Uee qinðrÞ½ �
�
þ Uxc qinðrÞ½ �f � V xc qinðrÞ½ �g: ð1Þ

In Eq. (1), EBS is the band structure energy (2
P

i�occ �i), where �i are the eigenvalues of the one-electron
Schr€oodinger equation; the second term is the ‘‘short-range’’ repulsive interaction which is the ion–ion in-
teraction offset by the overcounting of the Hartree interactions; and the last term is a correction to the

exchange-correlation.

In evaluating the total energy of the system (Eq. (1)), the input density is a sum of confined spherical

atomic-like densities, qinðrÞ ¼
P

i nij/iðr� RiÞj2. The orbitals /iðr� RiÞ are the slightly excited ‘‘fireball’’
pseudoatomic wavefunctions which are used as basis functions for solving the one-electron Schr€oodinger
equation. The occupation numbers ni determine the number of electrons occupying each spherically con-
fined atomic-like densities. Although the Harris–Foulkes functional is inherently a non-self-consistent

formalism, a self-consistent generalization has been implemented. This implementation is necessary to deal
with systems in which charge transfer contributes significantly to the underlying chemistry and requires a

self-consistent determination of the occupation numbers, ni, i.e., now ni ¼ n0i þ dni. Thus, the total energy is
a function of the occupation numbers, Etot½qinðrÞ� � Etot½ni� (ni 6¼ n0i), and a self-consistent procedure on the
occupation numbers, ni, is introduced (DOGS) [14,15]. With the given form of the total energy, the forces
acting on an atom at position Rl are determined by taking the derivative of the total energy with respect to

Rl. The band-structure force is evaluated using a variation of the Hellmann–Feynman theorem [9].

In our calculations, the generalized norm-conserving separable pseudopotentials of the Hamann [16] or

Troullier–Martins type [17] are used, employing for their construction the scheme of Fuchs and Scheffler
[18]. The pseudopotentials are transformed into the fully separable form suggested by Kleinman and By-

lander [19]. For the exchange-correlation energy within the pseudopotential calculation, and respectively

for the exchange-correlation potential, various parameterizations of the local-density approximation

(LDA) and of the generalized gradient approximation (GGA) are available [20–27].

S.D. Shellman et al. / Journal of Computational Physics 188 (2003) 1–15 3

For calculating the exchange-correlation (XC) interactions, we use the approach proposed by Horsfield

[28], which represents these interactions as a many-center expansion based on an expansion of the density a

site at a time. The Horsfield approximation can be used with gradient corrected functionals. The XC

potential matrix elements are calculated using up to a three-center approximation, splitting the matrix

elements into one, two, and three center integrals, similar to the electrostatic integrals. However, the on-site

terms and the double counting correction term are calculated using only a two-center approximation. This

approach for determining the exchange-correlation interactions is independent of the type of functional

used. Therefore, a variety of LDA and GGA exchange-correlation interactions can be implemented within
the method. Currently, however, only two types of exchange-correlation density functionals are available

within FIREBALLIREBALL–LDA and Becke exchange (B88) [23] with Lee–Yang–Parr (LYP) correlation [22].

In solving the one-electron Schr€oodinger equation a set of slightly excited pseudoatomic ‘‘fireball’’
wavefunctions are used. These orbitals are computed within DFT and a norm-conserving separable

pseudopotential [16] and are chosen such that they vanish at some radius rc (w
atomic
fireballjrP rc

¼ 0). This
boundary condition is equivalent to an ‘‘atom in the box’’ and has the effect of raising the electronic energy

levels (�s; �p; �d ; . . . atomic eigenvalues) due to confinement. The radial cutoffs (rc) are chosen such that these
electronic eigenvalues remain negative and are mildly perturbed from the free atom. A flexible choice of
basis set of double numerical (DN) or additional polarization orbitals are permitted within the FIREBALLIREBALL

method.

The ‘‘fireball’’ boundary condition yields promising features. First, the slight excitation of the atoms

somewhat accounts for Fermi compression in solids which apparently gives a better representation of solid-

state charge densities [29]. Second, the range of hopping matrix elements between orbitals on different

atoms is limited; therefore, very sparse matrices are created for large systems. This inherent sparseness

allows one to more readily implement linear-scaling algorithms to obtain the band structure energy, which

will be the main discussion of this paper and Section 5. Also as a result of the finite interaction range, the
two- and three-center interactions can be evaluated for all possible geometries, which will be the discussion

of the next section.

3. Parallelization of the integral package – CREATEREATE

Given any two atomic orbitals, i and j, beyond some cutoff interaction distance ðrci þ rcjÞ the matrix
elements Hij and Sij become exactly zero. As an example, the interaction range of the overlap matrix of two
s-orbitals is demonstrated in Fig. 2. As a result of the cutoff, there is only a prescribed interaction range

over which the integrals need be evaluated.

Within the FIREBALLIREBALL approach, all integrals may be pre-computed on a numerical grid and the specific

values needed gleaned from the tabulated values via interpolation. With this approach, interactions cal-

Fig. 2. The two-center interaction: due to cutoffs (rc) used in the method, the interaction range (d) of two s-orbitals, shown here, is
non-zero only within some finite range.

4 S.D. Shellman et al. / Journal of Computational Physics 188 (2003) 1–15

culated within the CREATEREATE module will be readily available. For two-center interactions, a cubic spline

function is chosen as the interpolation method, so as to maximize numerical stability. Because these integral

tables depend only on the atom type, their rc values, and the type of DFT exchange-correlation functional,
the integral tables only need to be generated once, for a given set of atomic species. As long as the criteria

chosen for generating the data files does not change, the data files may be used over and over again, saving

overall computation time. The generation process for the atomic interactions lends itself to easy parallel-

ization by spreading the data file creation over multiple processors based on differing integral types.

Within the CREATEREATE module, integrals are distributed to different processors based upon atomic number
and based upon integral type (kinetic, overlap, exchange-correlation, etc.). The simple loop based approach

is used for distributing work to processors and has been found to be very effective. This approach minimizes

communication while distributing work evenly across the processors. This parallelization scheme is par-

ticularly important, since the number of data files needed grows as OðM3Þ with the number of different
atomic species M .
The other two traditional approaches to integral evaluation were rejected for efficiency reasons. Within

the ‘‘conventional’’ approach employed in gas-phase electronic-structure codes [30], integrals are evaluated

once per geometry and stored to disk for use during the SCF procedure. This approach would result in
extensive disk I/O and computation, given the shear number of MD time steps generally needed. The

‘‘direct’’ approach [31] in which integrals are calculated as needed is similar to the approach taken within

FIREBALLIREBALL. Given the large computational cost of calculating each individual integral (because the integrals

are evaluated numerically), the evaluation of different matrix element components are performed via in-

terpolation within FIREBALLIREBALL, rather than via explicit evaluation of the integral as done in the gas-phase

direct approach.

The scalability of the CREATEREATE module is demonstrated for both 4 and 5 atomic species in Fig. 3. On an

SGI Origin 2000 system (Los Alamos National Laboratory), increased performance is achieved up to and
including 1024 processors. The Origin 2000 computer is designed with efficient parallel computation as the

goal, containing 128 processors per shared memory box. The version of MPI is also vendor optimized to

use the hardware interconnect present on the Origin 2000. This approach to parallelism for the CREATEREATE

module works very well on both shared memory machines and on distributed memory machines. Because

Fig. 3. Scalability of the CREATEREATE module. The larger calculation (five species) produces better scaling, as expected.

S.D. Shellman et al. / Journal of Computational Physics 188 (2003) 1–15 5

the code scales better with more species, the code scales as well as is needed. The efficiency advantage of this

parallelization is evident in that calculations previously taking several weeks now take only a few hours.

4. FIREBALLIREBALL parallelization – ScaLAPACK implementation

Within most DFT and TB methods, as well as the FIREBALLIREBALL method, the most time consuming

step are the OðN 3Þ matrix manipulations, such as matrix multiplication and diagonalization, where N
is the number of orbitals (i.e., matrix diagonalization and matrix multiplication). The adverse scaling

of these matrix manipulations produces a ‘‘bottleneck’’ which prohibits performing calculations of

systems with more than a few hundred atoms. One approach for reducing this ‘‘bottleneck’’ is to

implement a parallel set of routines for performing matrix diagonalization and matrix multiplication

found in the BLACS (Basic Linear Algebra Communication Subprograms), PBLAS (Parallel Basic

Linear Algebra Subprograms), and ScaLAPACK (Scalable Linear Algebra PACKage) packages. The

BLACS package provides a standard basis for parallel linear algebra. The PBLAS package is a parallel

version of the standard BLAS library, and performs matrix arithmetic on matrices distributed using
BLACS. A variety of data types (both real and complex) and operations are supported (including dot

products, addition and multiplication). The ScaLAPACK package is a parallel version of the standard

LAPACK library, which solves a variety of linear algebra problems, including the generalized eigen-

value problem.

The BLACS library manages the distribution of matrices across multiple processors using a block cyclic

decomposition. A block cyclic approach ensures load balancing and thus scalability. An example of the

global view of the matrix distributed to four processors A;B;C;D is presented in Fig. 4. In this example,
each processor has one-fourth of the matrix stored locally.
All computational work within fireball that is inherently OðNÞ is done on processor zero only. Processors

1 through p � 1 go to sleep and do computation only when contacted by processor zero. This is similar to
the fork and rejoin approach used in multi-threaded programming, but in this case processes 1 through

p � 1 wait rather than die and then reincarnate as needed. Initially, processor zero uses MPI to distribute
the matrices to the appropriate processors in a BLACS block cyclic distribution. The PBLAS routines are

called whenever matrices must be multiplied and ScaLAPACK routines are called to diagonalize matrices

as needed. Finally, MPI is used to accumulate the final answers to processor zero. The FIREBALLIREBALL code is

written in Fortran90 to take advantage of reduced memory requirements provided by parallelism.
Once the matrix blocks get too small, the performance degrades as is shown in Fig. 5. As the system

becomes larger (i.e., more orbitals implies larger N), the scalability improves because the OðN 3Þ step
dominates the calculation, thus ensuring good load balancing. As N becomes larger, the size and number of

Fig. 4. Global view of a block cyclic distributed matrix.

6 S.D. Shellman et al. / Journal of Computational Physics 188 (2003) 1–15

blocks distributed becomes larger, and the thus the PBLAS and ScaLAPACK algorithms become more
efficient. Better performance is obtained if the interconnect between processors is fast, because of the high

levels of inter-processor communication. This method provides a precursor to other approaches, such as

linear-scaling methods by providing a standard with which to compare. In general, parallel diagonalization

exhibits very poor scaling due to the heavy communication overhead (as seen by Fig. 5).

5. FIREBALLIREBALL parallelization – linear-scaling implementation

As a result of the conclusion from parallel diagonalization (Section 4), to achieve more efficient scaling a

better algorithm for obtaining the band-structure energy must be used. Similar to the report of Itoh et al.

[2], we choose to implement a linear-scaling algorithm into the ab initio TB FIREBALLIREBALL method [11]. Our

goal is to develop a parallel implemention using OpenMP/MPI languages for minimizing the general

functional form of Kim et al. [10], which when optimized determines the electronic band-structure energy.

We have developed and tested an efficient parallel optimization algorithm utilizing the conjugate gradient

method. The algorithm exhibits a near linear speedup in the problem size n and number of processors p, as
implemented on up to 1024 processors. We illustrate the key principles of the algorithm here, and describe it
in detail in Appendix A. Since we introduce variations from the original work of Itoh et al. [2], we include

full details here.

5.1. Energy functional and gradient matrix

We define h and s to be the symmetric n� n Hamiltonian and overlap matrices, respectively, and m,
16m6 n, to be the number of occupied bands (typically, mP n=2). The vectors Ci, i ¼ 1::m, are the length-
n wavefunction coefficient vectors, and C is the n� m matrix of which Ci is the ith column. We define the
matrices F � hC, F s � sC, H � CTF ¼ CThC, and S � CTF s ¼ CTsC; clearly H and S are symmetric. The
energy functional is given in [10] as

~EE � 2 2TrðH
"

� gSÞ þ
Xm
i;j¼1

ðgS2ij � HijSijÞ
#
þ gN ; ð2Þ

where N is the number of electrons in the system, g is a parameter related to the chemical potential, and
TrðAÞ �

Pn
i¼1 Aii is the trace of an n� n matrix A.

Fig. 5. Scalability of the fireball module with the ScaLAPACK (parallel diagonalization) implementation. These calculations were

performed on the SGI-Nirvana machine located at Los Alamos National Laboratory (LANL).

S.D. Shellman et al. / Journal of Computational Physics 188 (2003) 1–15 7

We define the n� m gradient matrix

G � o ~EE
oC

� o ~EE
oCij

" #
: ð3Þ

To find an expression for G we apply the chain rule to the matrix factors of ~EE. Defining the n� m matrix
Dkl � ½dikdjl�, where dij is the Kronecker delta function, we observe that

oH
oCkl

¼ DTklhC þ CThDkl ¼ DTklF þ DTklF
� �T

; ð4Þ

oS
oCkl

¼ DTklsC þ CTsDkl ¼ DTklF
s þ DTklF

s
� �T ð5Þ

and hence

o ~EE
oCkl

¼ 2 2Tr
oH
oCkl

	(
� g

oS
oCkl

�
�
X
i;j¼1

Hij

��
� 2gSij

� oSij
oCkl

þ oHij

oCkl
Sij

)

¼ 8 Fkl
�

� gF s
kl

�
� 4

Xm
i¼1

F s
ki Hlið � 2gSliÞ � 4

Xm
i¼1

FkiSli: ð6Þ

It follows that

G ¼ 8F � 8gF s þ 8gF sS � 4F sH � 4FS: ð7Þ

As described in [10], the closeness of g to the electronic chemical potential determines whether the ground-
state energy E0 is a minimum of ~EE. For the purposes of simplification, we currently work with a fixed g ¼ 0,
with m ¼ n=2 (the occupied subset – i.e., the functional of Ordej�oon et al.) [32]. This avoids the need for
computing g at each iteration of the algorithm, but requires careful selection of the initial coefficients and
slows down convergence in many cases (see Section 7). The algorithm developed here can be readily applied

to the general case (g 6¼ 0) with only slight variation. With g ¼ 0, Eqs. (2) and (7) become

~EE � 2 2 TrðHÞ

�
Xm
i;j¼1

ðHijSijÞ
!
; ð8Þ

G ¼ 8F � 4F sH � 4FS: ð9Þ

5.2. Minimization method

The iterative method described in Appendix A approximates the coefficient matrix ~CC at which ~EE
achieves its ground state, E0. At each iteration the gradient matrix G is computed and used by the

conjugate gradient method to determine a search direction along which to vary the coefficient matrix C
so that C converges to ~CC. The approximation of the optimal step length ~cc which locally minimizes ~EE
along the search direction requires only the minimization of a fourth-degree polynomial. We let i denote
the number of the iteration with i ¼ 1 at the first iteration, let Ci denote the value assigned to C at the
beginning of iteration i (with C1 equal to the initial guess), and let ~EEi denote the energy value computed

at the end of iteration i. The algorithm terminates when the relative change in ~EE falls within a given
threshold d > 0, that is,

8 S.D. Shellman et al. / Journal of Computational Physics 188 (2003) 1–15

j ~EEi � ~EEi�1j6 dj ~EEij ð10Þ

at step i > 1, and when the RMS of G falls within an absolute threshold f > 0.

5.3. Communication method

We describe here the communication method we use to perform distributed matrix multiplications. The
method attempts to ensure that the communications overhead has order OðpÞ, where p > 0 is the number of
processors, by ensuring that a processor only sends its matrix section to those other processors that require

it to perform the multiplication.

We define m0 � m=p (resp. n0 � n=p) to be the number of coefficient vectors (resp. rows of h and s)
distributed to each processor. We assume for simplicity that p exactly divides m and n. Thus processor k,
k ¼ 0; . . . ; p � 1, locally stores rows kn0 þ 1 . . . ðk þ 1Þn0 of C, h, and s.
We introduce a notation to describe the distribution of matrices over p processors. For a matrix X with

m ¼ m0p rows (resp. columns), we let X½km� (resp. X ½km�) denote the submatrix made up of rows (resp. col-
umns) km0 þ 1 . . . ðk þ 1Þm0 of X . For a matrix X with n ¼ n0p rows (resp. columns), we let X½kn� (resp. X ½kn�)

denote the submatrix made up of rows (resp. columns) kn0 þ 1 � � � ðk þ 1Þn0 of X . We let X ½ln�
½km� represent

ðX ½ln�Þ½km� or, equivalently, ðX½km�Þ½ln�. Following this notation, each processor k locally stores C½kn�, h½kn�, and
s½kn�.
Suppose we want to multiply a l� m matrix A by a m� n matrix B, where p is the number of processors,

l ¼ l0p, m ¼ m0p, and n ¼ n0p. Suppose also that for k ¼ 0; . . . ; p � 1, processor k locally stores A½kl� and B½kl�.

Processor k can compute ðA� BÞ½kl� using the equality

ðA� BÞ½kl� ¼
Xp�1
i¼0

A½im�
½kl�B½im�: ð11Þ

Let us now define a p � p block information matrix A0 associated with A, such that A0
iþ1;jþ1 ¼ 0 if A

½jm�
½il� ¼ 0

and A0
iþ1;jþ1 ¼ 1 if A

½jm�
½il� 6¼ 0. Row k of A0 contains a 1 in position iþ 1 if processor k needs to receive B½im�

from processor i to complete the computation of (11). It naturally follows that column k of A0 contains a 1

in position iþ 1 if processor k needs to send B½km� to processor i. We always assume that the diagonal of a
block information matrix is zero.

A block information matrix associated with a distributed matrix may be easily computed by examining

matrix elements on each processor to fill in the rows, then gathering the rows across all processors. The
block structure of h, s and the initial C ensure that blocks which are zero in the initial values of H, S, and C

remain zero throughout the algorithm, so that the associated block information matrices need be computed

only once.

Given distributed matrices A and B and a block information matrix A0 stored on every processor, we use

the following method to compute and distribute A� B. Here we call the sequence of processors
k þ 1; . . . ; p � 1; 0; . . . ; k � 1 the successor chain of processor k.
1. Initialize the Boolean array recv½0 � � � p � 1� to false. This array indicates which processors will be tar-
gets of sends.

2. Each processor k executes the following loop for i ¼ 0; . . . ; p � 1. Processor i examines row iþ 1 of A0

to find the first processor in i�s successor chain that needs to receive the local section from processor i,
and whose entry in recv is false. If such a processor exists we call it j, otherwise go to step(A0

iþ1;jþ1)

to zero, set recv½j� true, send the local section of k to j if i ¼ k, and receive the local section of i if
j ¼ k.

3. If A0 ¼ 0 then terminate, otherwise go to step 2.

S.D. Shellman et al. / Journal of Computational Physics 188 (2003) 1–15 9

5.4. Use of parallel tools

In the parallel implementation presented here, the MPI and OpenMP libraries are used to manage

communication between processes. The eight processors on each node are divided into two four-processor

shared memory groups. The groups of processors communicate with each other using MPI library calls as

if each group were a single processor. Processors within the same group behave according to the OpenMP

standard; one processor executes the application code and communicates with other groups, while the

other processors in the group remain idle except when a shared loop is encountered. A shared loop is

identified by OpenMP directives placed within the code. The iterations of a shared loop are distributed

among the processors in the group, while any variables that must be available to the entire group are
flagged in the code and held in shared memory. In this manner we achieve limited parallelism without the

need for MPI communications between processors in a group. We declare the application�s most compute-
intense loops to be shared; these include matrix multiplication and addition, and computation of the

energy functional.

An additional decrease in the communication overhead is obtained by using the MPI function called

MPI_GraphCreate. This function takes a graph whose vertices indicate paths between pairs of processors

along which data must be sent, and creates a communicator in which the processors are ordered in such a

manner that the graph is almost optimally matched to the underlying multiprocessor architecture. This
improves the chances that processors that need to communicate with each other will be physically ‘‘close’’

to one another. Our current method is to perform a Boolean OR of all the block information matrices

associated with the matrices in the algorithm, then create a graph containing a vertex for every pair of

processors whose entry in the resulting block matrix is nonzero. This graph is passed to MPI_Graph-

Create, and then each processor sends its local parameters and matrix segments to the processor that will

have its rank under the new communicator. In essence, each processor assumes the identity of another

processor. Using the new communicator in place of the original communicator makes this substitution

transparent. This process needs to be done only once, after the computation of the block information
matrices.

6. Results

The scaling results from running the optimization algorithm for systems of 1512, 3024, and 6048

atoms (this corresponds to 54, 108, and 216 HMX molecules, respectively) on Blue Horizon (IBM SP

architecture at San Diego Supercomputer Center), with up to 1024 processors, are presented in Figs. 6

and 7. As seen from Fig. 6, the linear scaling in the number of processors becomes stronger and more

consistent as the number of atoms increases. For 1512 atoms, the ratio of the time per iteration for 2n
processors to the time per iteration for n processors ranges between 58 and 71% (with 140% at

2n ¼ 1024), with an average of 75% (50% indicates ideal linear scaling). For 6048 atoms, the same ratio
ranges between 59 and 68% (with 69% at 2n ¼ 1024), with an average of 64%. The improved scaling
performance is due to the fact that the proportion of computation time (matrix multiplication, etc.) to

communication time increases with the number of atoms. Additionally, as seen in Fig. 7, the linear

scaling in the number of atoms becomes stronger and more consistent as the number of processors in-

creases. For eight processors, the ratio of the time per iteration for 2n atoms to the time per iteration for
n atoms ranges from 194 to 255%. For 512 processors, the same ratio ranges from 180 to 233%. This

reflects slight superlinearity of scaling as the dimensions of the matrix segments distributed to the pro-

cessors increase.
We performed preliminary tests to measure the rate of convergence to the minimum energy value using

the 1512 atom system. By changing the relative energy tolerance, d, gradient RMS tolerance, f, and cutoff

10 S.D. Shellman et al. / Journal of Computational Physics 188 (2003) 1–15

radius, r, no obvious series of patterns regarding the number of iterations until convergence was deter-
mined. The lack of a certain pattern in our preliminary results may be largely due to the variable ran-

domness in initializing the wavefunction coefficients that occurs from one job to the next (different sets of

processors from one job submission to the other). However, one exception was that as the relative energy

tolerance, d, was decreased from d ¼ 10�5 to d ¼ 10�6 the number of iterations required increased addi-
tionally by about an order of magnitude.

7. Summary

Similar to the manner of Itoh et al. [2], we report implementation of a massively parallel linear-scaling

algorithm into an ab initio tight-binding method called FIREBALLIREBALL [11]. Our approach uses the standard

MPI message passing interface mixed with an OpenMP strategy. Our results demonstrate that we have

achieved linear-scaling parallelization both with the number of processors (up to 1024) and with system size

(up to 6048 atoms).

Fig. 6. Scaling results – time to perform one iteration of the optimization algorithm as the number of processors are increased with

fixed number of atoms (on NPACI Bluehorizon IBM-SP3 architecture).

Fig. 7. Scaling results – time to perform one iteration of the optimization algorithm as the number of atoms are increased with fixed

number of processors (on NPACI Bluehorizon IBM-SP3 architecture).

S.D. Shellman et al. / Journal of Computational Physics 188 (2003) 1–15 11

The use of local-orbitals in the FIREBALLIREBALL method yields a very sparse Hamiltonian matrix, which fa-

cilitates using a linear-scaling algorithm to obtain the electronic band-structure energy. Evaluation of forces

is also written in a massively parallel procedure so that linear-scaling is achieved for molecular-dynamics

simulations. Implementation of our parallel algorithms can be generalized to other TB or other semi-

empirical methods with little effort.

Plans are underway to implement an improved energy functional having a positive definite Hessian

matrix. Described in Section 5, this functional requires that g be computed at each step to approximate the
electronic chemical potential. Although with g fixed at 0 the careful selection of initial coefficient vectors
seems to prevent the functional value from spiraling ever downward, the nonexistence of a global minimizer

of P in step 6 of the algorithm may be responsible for the slow convergence. Additionally, plans are un-

derway to explore methods of computing search directions that may have better performance than con-

jugate gradient, and methods of computing search lengths that may overcome the sensitivity of the current

root-finding method without requiring a full line search.

Acknowledgements

The authors thank P. Ordej�oon and S. Itoh for useful discussions in the initial stages of this project. This
research is funded by The University of Utah Center for the Simulation of Accidental Fires and Explosions

(C-SAFE), funded by the Department of Energy, Lawrence Livermore National Laboratory, under sub-

contract B341493. Within this DOE funding, allocations of computer time on the SGI Origin 2000 (Nir-

vana) located at Los Alamos National Laboratory were used in this work; an allocation of computer time

from the NPACI–SDSC (National Partnership for Advanced Computational Infrastructure–San Diego

Supercomputer Center) was also used in this work.

Appendix A. Description of the algorithm

The steps involved in an iteration of the algorithm are described in detail below, and graphically in the

associated figures. The total communication cost of an iteration consists of five order 6OðpÞ operations
(see Section 5.3) and four Oðlog pÞglobal gathers.

A.1. Steps of the algorithm

1. Initialization. Each processor k, k ¼ 0; . . . ; p � 1, initializes and locally stores C½kn�, h½kn�, and s½kn�.
2. Computation of ðCTÞ½km�, F½kn�, and ðF sÞ½kn�.
This step is based on the equalities

F½kn� ¼ h½kn�C ¼
Xp�1
i¼0

h½in�½kn�C½in�; ðF sÞ½kn� ¼ s½kn�C ¼
Xp�1
i¼0

s½in�½kn�C½in�: ðA:1Þ

Set C ¼ Ci, where i is the iteration number. Each processor k copies ðC½km�
½kn� Þ

T
into ðCTÞ½kn�½km�, multiplies h

½kn�
½kn� and

s½kn�½kn� by C½kn�, and copies these products into F½kn� and ðF sÞ½kn�, respectively. It then sends C½kn� to all other

processors that require it, an order 6OðpÞ global operation described in Section 5.3. As each processor k
receives C½ln� from processor l, l 6¼ k, it copies ðC½km�

½ln� Þ
T
into ðCTÞ½ln�½km�, multiplies h

½ln�
½kn� and s

½ln�
½kn� by C½ln�, and adds

these products to F½kn� and ðF sÞ½kn�, respectively. At the end of this step each processor k has computed and
locally stored ðCTÞ½km�, F½kn�, and ðF sÞ½kn�. See Fig. 8 for an illustration of the computation of F½kn�(the com-
putation of ðF sÞ½kn� is similar).

12 S.D. Shellman et al. / Journal of Computational Physics 188 (2003) 1–15

3. Computation of H½km� and S½km�.
This step is based on the equalities

H½km� ¼ ðCTÞ½km�F ¼
Xp�1
i¼0

ðCTÞ½in�½km�F½in�;

S½km� ¼ ðCTÞ½km�F s ¼
Xp�1
i¼0

ðCTÞ½in�½km�ðF
sÞ½in�:

ðA:2Þ

Each processor k multiplies ðCTÞ½kn�½km� by F½kn� and ðF sÞ½kn�, and copies these products into H½km� and S½km�, re-
spectively. It then sends F½kn� and ðF sÞ½kn� to all other processors that require it, an order 6OðpÞ global
operation described in Section 5.3. As each processor k receives F½ln� and ðF sÞ½ln� from processor l, l 6¼ k, it
multiplies ðCTÞ½ln�½km� by F½ln� and ðF sÞ½ln� and adds these products to H½km� and S½km�, respectively. At the end of

Fig. 9. Computation of H½km� in step 3.

Fig. 8. Computation of F½kn� in step 2.

S.D. Shellman et al. / Journal of Computational Physics 188 (2003) 1–15 13

this step each processor k has computed and locally stored H½km� and S½km�. See Fig. 9 for an illustration of the
computation of H½km� (the computation of S½km� is similar).
4. Computation of the local gradient G½kn� and energy value ~EE.
This step is based on the equality

G½kn� ¼ 8F½kn� � 4ðF sÞ½kn�H � 4F½kn�S ¼ 8F½kn� � 4
Xp�1
i¼0

ðF sÞ½im�½kn�H½im� � 4
Xp�1
i¼0

F ½im�
½kn� S½im�: ðA:3Þ

Each processor k sets G½kn� to 8F½kn� � 4ðF sÞ½km�½kn�H½km� � 4F ½km�
½kn� S½km�. It then sends H½km� and S½km� to all other

processors that require them, an order 6OðpÞ global operation described in Section 5.3. As each processor
k receives H½lm� and S½lm� from processor l, l 6¼ k, it subtracts 4ðF sÞ½lm�½kn�H½lm� þ 4F ½lm�

½kn� S½lm� from G½kn�. At the end

of this step each processor k has computed and locally stored G½kn�. See Fig. 10 f ~EEg � f ~EEgi using 8. Since H
and S are symmetric, this may be done by summing the matrix entries and products on the separate
processors and using a global gather to sum the contributions of the processors.

5. Computation of conjugate gradient search direction.

To compute the search direction R we use the Polak–Ribiere conjugate gradient method ([33, p. 120]). If
i ¼ 1 or ~EEi > ~EEi�1 (i.e., the energy has increased from the last iteration) then reset the method by setting

R ¼ G (the steepest descent search direction). Otherwise set R ¼ Gþ bRi�1, where Ri�1 and Gi�1 are the

search direction and gradient from the previous iteration, �AA denotes a vectorization of the elements of the
matrix A, and b ¼ �GGTð �GG� �GGi�1Þ=k �GGi�1k22. The vector products are computed using global gather opera-
tions.

6. Approximation c of optimal step length ~cc.
To approximate the step length ~cc that minimizes ~EE along the search direction R, we need a trial step

length c0. We set c0 ¼ minð�f; f~ccgi�1Þ, where ~ccfi�1g is the step length from the previous iteration and f is a
small positive constant which ensures that the step length has a minimum magnitude (we currently use

f ¼ 0:001). Use steps 2–4 to compute the energy values ~EE1; ~EE2; ~EE3; ~EE4 at the points C � 2c0R; C � c0R;Cþ
c0R;C þ c0R, respectively. These computations are independent of each other and can be done simul-
taneously, requiring an order 6OðpÞ global communication operation. Each processor computes the
coefficients of P ðcÞ, the unique fourth-degree polynomial such that Pð�2c0Þ ¼ ~EE1, P ð�c0Þ ¼ ~EE2, P ðc0Þ ¼ ~EE3,
P ð2c0Þ ¼ ~EE4, and Pð0Þ ¼ ~EE. Each processor then computes the roots fz1; z2; z3g of dP=dc. Out of these r is
the real root which yields the smallest value of the polynomial. To ensure progress and avoid problems with

Fig. 10. Computation of G½kn� in step 4.

14 S.D. Shellman et al. / Journal of Computational Physics 188 (2003) 1–15

instability in root finding, we do not allow the step length to be non-negative or too small or large in

magnitude. Hence c ¼ maxð�2c0;minð�f;�absðrÞÞÞ.
7. Update C and test for termination.
Set Ciþ1 ¼ C þ cR. If the termination conditions of Section 5.2 are satisfied then terminate with

f ~EEg ¼ f ~EEgi, otherwise return to step 2. Observe that on termination, C (not Ciþ1) is the coefficient matrix

whose energy value is ~EE.

References

[1] D.E. Bernholdt, E. Apra, J. Nieplocha, Int. J. Quantum Chem. 29 (1995) 475.

[2] S. Itoh, P. Ordej�oon, R.M. Martin, Comp. Phys. Commun. 88 (1995) 173.
[3] M.J. Frisch et al., Gaussian 98, Revision A.6, Gaussian, Inc., Pittsburgh, PA, 1998.

[4] J. Hutter, P. Ballone, M. Bernasconi, P. Focher, E. Fois, S. Goedecker, D. Marx, M. Parinello, M. Tuckerman, CPMD Version

3.0f, MPI f€uur Festk€oorperforschung and IBM Research Laboratory, Z€uurich, 1997.

[5] G. Kresse, J. Furthm€uuller, Comput. Mater. Sci. 6 (1996) 15.
[6] W. Pan, T.-S. Lee, W. Yang, J. Comput. Chem. 19 (1998) 1101.

[7] P. Ordej�oon, Comput. Mater. Sci. 12 (1998) 157.

[8] S. Goedecker, Rev. Mod. Phys. 4 (1999) 1085.

[9] O.F. Sankey, D.J. Nikleswki, Phys. Rev. B 40 (1989) 3979.

[10] J. Kim, F. Mauri, G. Galli, Phys. Rev. B 52 (1995) 1640.

[11] J.P. Lewis, K.R. Glaesemann, G.A. Voth, J. Fritsch, A.A. Demkov, J. Ortega, O.F. Sankey, Phys. Rev. B 64 (2001) 195103.

[12] J. Harris, Phys. Rev. B 31 (1985) 1770.

[13] W.M.C. Foulkes, R. Haydock, Phys. Rev. B 39 (1989) 12520.

[14] A.A. Demkov, J. Ortega, O.F. Sankey, M.P. Grumbach, Phys. Rev. B 52 (1995) 1618.

[15] O.F. Sankey, A.A. Demkov, W. Windl, J.H. Fritsch, J.P. Lewis, M. Fuentes-Cabrera, Int. J. Quantum Chem. 69 (1998) 327.

[16] D.R. Hamann, Phys. Rev. B 40 (1989) 2980.

[17] N. Trouiller, J.L. Martins, Phys. Rev. B 43 (1991) 1993.

[18] M. Fuchs, M. Scheffler, Comp. Phys. Commun. 119 (1999) 67.

[19] L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48 (1982) 1425.

[20] J.P. Perdew, A. Zunger, Phys. Rev. B 23 (1981) 5048.

[21] J.P. Perdew, Phys. Rev. B 33 (1986) 7406.

[22] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.

[23] A.D. Becke, Phys. Rev. A 38 (1988) 3098.

[24] J.P. Perdew, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46 (1992) 6671.

[25] J.P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244.

[26] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.

[27] J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54 (1996) 16533.

[28] A. Horsfield, Phys. Rev. B 56 (1997) 6594.

[29] M. Finnis, J. Phys.: Condens. Mater. 2 (1990) 331.

[30] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.

Su, T.L. Windus, M. Dupois, J.J.A. Montgomery, J. Comput. Chem. 14 (1993) 1347.

[31] J. Alml€oof, in: D.R. Yarkony (Ed.), Modern Electronic Structure Theory, Part I, World Scientific, New Jersey, 1995, p. 110.

[32] P. Ordej�oon, D.A. Drabold, R.M. Martin, M.P. Grumbach, Phys. Rev. B 51 (1995) 1456.

[33] J. Nocedal, S.J. Wright, Numerical Optimization, Springer, New York, 1999.

S.D. Shellman et al. / Journal of Computational Physics 188 (2003) 1–15 15

	Massively parallel linear-scaling algorithm in an ab initio local-orbital total-energy method
	Introduction
	Theoretical background
	Parallelization of the integral package - Create
	Fireball parallelization - ScaLAPACK implementation
	Fireball parallelization - linear-scaling implementation
	Energy functional and gradient matrix
	Minimization method
	Communication method
	Use of parallel tools

	Results
	Summary
	Acknowledgements
	Steps of the algorithm
	Description of the algorithm
	References

